
BE/APh 161: Physical Biology of the Cell, Winter 2025
Homework #10

Due 2:30 PM, March 19, 2025.

Problem 9.1 (Equation of motion for the cortex, 60 pts).
In Chapter 14 of their recent book on active matter, The Restless Cell, Phillips and
Hueschen give the following equation to describe the motion of the cell cortex.

−η∂2
x vx + γvx = ∂xC. (9.1)

Note that when we have repeated indices that are x, y, or z, summation is not as-
sumed. In the notation we have been using in lecture, this is

−η∂2
x vx + γvx = ∂x σa. (9.2)

This equation describes how a gradient in active stress drives cortical flow against
viscous dissipation and frictional losses. In this problem, you will derive this equa-
tion. Even though the nematic order does not appear in the equation, it is necessary
in its derivation. We saw in lecture that wemust have anisotropy to be able to support
active stresses; this will become clear when we consider the nematic order explicitly
in deriving the above cortical equation of motion.

In lecture, we defined the nematic order parameter as

Qij = S
(

ninj −
1
3

δ ij

)
. (9.3)

Here, S is the magnitude of the local order. We wrote the active stress as a Taylor
series expansion of the nematic order parameter as

σactive = σ 0
a δ ij + σaQij. (9.4)

Then, the stress tensor for a three-dimensional active nematic viscous fluid, which
is how are are modeling the cortex, is

σ ij = −Π δ ij + 2ηvij + σ nematic
ij + σaQij, (9.5)

where Π = p − σ 0
a and vij is the symmetric part of the velocity gradient tensor,

vij =
1
2
(∂ivj + ∂jvi) . (9.6)

We denote by σ nematic
ij the passive stresses due to nematic order. The σaQij term is

directional active stress exerted along the nematic order. The equation of motion is
then, considering again the interialess limit for an incompressible fluid,

∂j σ ij = 0 = −∂i Π + η∂j∂jvi + ∂j σ nematic
ij + ∂j(σaQij). (9.7)

Starting from these equations, you will derive the equation of motion for the cor-
tex, (9.2).
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a) To simplify things, wewill assume that the alignment of filaments in the cortex
rapidly relax to equilibrium so that the dynamics of the order parameter may
be neglected, i.e., Qij is constant. To find the equilibrium value of Qij, we note
that the deformation energy of a nematic liquid crystal can be approximately
written as

Fd = F0 +
χ
2

QijQij +
L
2
(∂kQij) (∂kQij) . (9.8)

Give an explanation as to why this is a reasonable functional form for the de-
formation free energy.1

We can find σ nematic
ij to be related to the functional derivative of the defor-

mation energy. You do not need to derive this, but you get the result we stated
in lecture.

σ nematic
ij = β 1 (χ − L∂k∂k)Qij. (9.9)

b) The cortex is essentially a two-dimensional object. It is only about one micron
thick, but has extent of over 50 microns. We therefore assume that the fila-
ments of the cortex are aligned only in the x-y plane. In other words, nz = 0,
which means that Qxz = Qyz = 0 and Qzz = −S/3. Given that it is con-
strained to two dimensions, find the value of Qij that minimizes the deforma-
tion free energy, subject to the constraint that alignment is confined to a thin
sheet, i.e., that nz ≈ 0. Your result will be linear in S.

c) Next, we specify that the cortex does not bend or buckle, so the stresses normal
to the two-dimensional cortex should vanish. In other words, σ zz = 0. Based
on this assumption, derive an expression for Π . Hint: Don’t forget that in
three dimensions, the material is incompressible, so ∂ivi = 0.

d) Using the expression you derived in part (c), along with the assumption that
Qij is constant, show that the two dimensional equations of motion are

η∂2
z vx + 3η∂2

x vx + η (∂2
y vx + 2∂x∂yvy) + ∂x σa = 0, (9.10)

η∂2
z vy + 3η∂2

y vy + η (∂2
x vy + 2∂y∂xvx) + ∂y σa = 0, (9.11)

where we have absorbed a factor of S/2 into σa.

e) Show that

η∂2
z vx = ∂z σ xz + η∂x(∂xvx + ∂yvy). (9.12)

1There are also deep arguments about symmetry that come into play here, but you do not need
to worry too much about those. You can read more about this particular form of the free energy; it is
called a Landau-de Gennes expansion.
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A similar relation holds in the y-direction. As a result, we have

∂z σ xz + η (∂2
x + ∂2

y )vx + 3η∂x(∂xvx + ∂yvy) + ∂x σa = 0, (9.13)

∂z σ yz + η (∂2
x + ∂2

y )vy + 3η∂y(∂xvx + ∂yvy) + ∂y σa = 0. (9.14)

f ) Next, wewill average the two equations over the thin dimension, z. That is, we
will apply the operation h−1 ∫ h

0 dz, where h is the cortical thickness, to each
equation. We define

ā =
1
h

∫ h

0
dz a, (9.15)

where a is some physical quantity, such as vx. Show that if ∂xh ≈ 0, i.e., if h
is approximately constant, then ∂xa ≈ ∂xā. Going forward, you may assume
that similar results hold for ∂ya, ∂x∂ya, and so on.

g) Perform the averages over equations (9.13) and (9.14). You will be left with a
term like h−1 σ xz

∣∣h
0. Explain why we can write

1
h σ xz|h0 = −γ v̄x. (9.16)

What is the meaning of the parameter γ?
h) Your equations should now look like

−γ v̄x + η (∂2
x + ∂2

y )v̄x + 3η∂x(∂xv̄x + ∂yv̄y) + ∂x σ̄ a = 0, (9.17)

−γ v̄y + η (∂2
x + ∂2

y )v̄y + 3η∂y(∂xv̄x + ∂yv̄y) + ∂y σ̄ a = 0. (9.18)

Explain why the quantity 3η is a two-dimensional bulk viscosity.

i) Now, wewill assume that we can neglect curvature and that we have azimuthal
symmetry in theC. elegans cortex. Under these assumptions, write a simplified
version of equation (9.17). Is equation (9.18) still necessary? Finally, what do
we need to do to get the final result we are after, equation (9.2)?

j) Consider now a domain 0 ≤ x ≤ L. Let σ 0
a be the magnitude of the active

stress. Identify a length scale ℓ such that you can nondimensionalize equation
(9.2) to give

∂x̃ σ̃ a = −∂2
x̃ ṽ + ṽ, (9.19)

where tildes denote dimensionless quantities and the domain is now 0 ≤ x̃ ≤
L̃ with L̃ = L/ℓ. Provide an interpretation of the length scale ℓ.
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k) Imagine we now have a very sharp active stress gradient at x̃ = x̃0, σ̃ a =
θ (x̃ − x̃0), where θ (x) denotes the Heaviside step function. It can be shown
that when material cannot flow through the ends (ṽ(0) = ṽ(L̃) = 0),

ṽ(x̃) = sinh(L̃ − x̃0)

sinh(L̃)
sinh(x̃)− θ (x̃ − x̃0) sinh(x̃ − x̃0). (9.20)

(Can you derive this?) Plot this result for x̃0 = 7L̃/10 for various values of L̃.
Can a local active stress gradient drive flow over long length scales?

Problem 9.2 (Optical cell stretching, 70 pts).
We briefly discussed optical cell stretchers in lecture. Optical cell stretchers work
by taking advantage of the difference in index of refraction between a cell and the
surrounding solution to trap a free cell in two counter-propagating laser beams. The
power of the laser is then increased to exert stress and elongate the trapped cell. The
induced stress is proportional to the laser power. The constant of proportionality,
FG is dependent on geometry and cannot be ascertained. The deformation (strain)
is measured by taking images with a light microscope. The process is illustrated in
Figure 1. In this way, the mechanical properties of an entire cell can be measured.

mechanical properties according to the situation and the
overall function of the cell. A motile immune cell will re-
quire different properties for its regular duties than a sta-
tionary tissue cell, just as a replicating cell will have
different properties than a post-mitotic cell. This com-
plexity of microscopic detail and possible cellular behav-
ior pose an enormous challenge to the theoretical
understanding and description of cells from a mechani-
cal point of view. The currently available arsenal of dif-
ferent cell manipulation techniques, which all have
advantages and limitations, allows the investigation of
cellular mechanical properties under various experimen-
tal conditions and can provide the necessary basis for a
better understanding of these complex structures.

The optical stretcher is one recently developed tool
for the deformation of single cells [9]. Two counter-
propagating laser beams induce stress at the surface of
a cell, which trap the cell at the center between the
two beams and, upon increase of the light power, axially
elongate the trapped cell (Fig. 1) [10]. Some major differ-
ences of the optical stretcher compared to other cell
deformation techniques include the broad and continu-
ous distribution of stress over the cell surface, the lack
of any mechanical contact with the cell, and the possibil-
ity to measure suspended, non-attached cells.

The broad stress distribution is in stark contrast to
the most common single-cell deformation techniques
such as micropipette aspiration [11,12], atomic force
microscopy (AFM) measurements [6,13–15] magnetic
bead experiments [16,17], or optical tweezers [18]. In
these techniques, forces are applied at certain points or
over small areas. This can result in non-linear stress dis-
tributions that are harder to analyze and might in some
cases even lead to local disruption of the cytoskeleton.
These techniques are well suited to gather local informa-
tion and allow the mapping of elasticity distributions
across the cell. For example, the nuclear region of at-
tached cells is found to show a different elasticity than
the cellular lamellipodium. In contrast, the optical
stretcher creates stresses induced by the transfer of
momentum from the light to the surface at any point
that is illuminated. The details of that momentum trans-
fer and the Gaussian profile of the laser beams used lead
to a distribution of stress over the entire cell surface
(Fig. 2). The resulting deformation is thus a response
of the entire cell and reveals global rather than local
properties of the cytoskeleton. Also, the optical stretcher
uses light directly for the application of force so that any
mechanical contact, which is common in most other
deformation techniques, is circumvented. This offers

Fig. 1. (a) A BALB/3T3 cell is trapped between two divergent, Gaussian laser beams at 200 mW per beam (upper image). When increasing the light
power to 1.7 W per beam, the cell is stretched along the laser axis (lower image). The contour, and the resulting deformation, of the cell can be
extracted by an image analysis algorithm and is overlaid on the images. (b) Stepwise increase of the stretching power results in a linear increase of the
cell diameter measured.

264 F. Wottawah et al. / Acta Biomaterialia 1 (2005) 263–271

Figure 1: Schematic of an optical stretcher. The cell stretches along the axis
parallel to the laser beams. The strain is given by the fractional change of the
diameter of the cell along the stretching axis. Figure take from Wottawah, et
al., Acta Biomaterialia, 1, 263–271, 2005.

This technique was used to assess the mechanical properties of two mammalian
cell types, 3T3 and SVT2 (which have reduced actin), in Wottawah, et al., PRL, 94,
098103, 2005. In this work, the authors performed a stress step experiment in which
a constant stress σ 0 was applied at t = 0, as in lecture. The stresswas set back to zero
at time t = t1. The authors can obtain the creep compliance from this measurement.
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Figure 2: Schematic of an active Jeffreys fluid.

a) Derive an expression for the strain in the stress step experiment ifwemodel the
cell as an active Jeffreys fluid as in Figure 2. The stress step can be described
mathematically as

σ (t) = FG σ 0 θ (t) θ (t1 − t), (9.21)

where θ (t) is the Heaviside step function. Assume the active stress is con-
stant, given by σ a.

b) The authors perform curve fits of the expression you derived in part (a) to get
values for the parameters of the cell. Explain why they cannot independently
measure E, η , and ζ , but only products thereof. Can a constant active stress
be detected in this experiment?

c) The authors then use the curve fit parameters to compute the storage and loss
moduli (E′ and E′′) of the cell. Derive expressions for the storage and loss
moduli from the fit parameters. (Note: These reported storage and lossmoduli
are dependent on choosing a model for the viscoelastic behavior of the cell.
This is not ideal, but is apparently a necessity due to experimental constraints.)
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