BE/APh 161: Physical Biology of the Cell, Winter 2025
Homework #10
Due 2:30 PM, March 19, 2025.

Problem 9.1 (Equation of motion for the cortex, 60 pts).
In Chapter 14 of their recent book on active matter, The Restless Cell, Phillips and
Hueschen give the following equation to describe the motion of the cell cortex.

—n0vy + yv, = 0,C. (9.1)

Note that when we have repeated indices that are x, y, or z, summation is #ot as-
sumed. In the notation we have been using in lecture, this is

—n0?V, + yv, = ;0. (9.2)

This equation describes how a gradient in active stress drives cortical flow against
viscous dissipation and frictional losses. In this problem, you will derive this equa-
tion. Even though the nematic order does not appear in the equation, it is necessary
inits derivation. We saw in lecture that we must have anisotropy to be able to support
active stresses; this will become clear when we consider the nematic order explicitly
in deriving the above cortical equation of motion.

In lecture, we defined the nematic order parameter as
1

Here, S is the magnitude of the local order. We wrote the active stress as a Taylor
series expansion of the nematic order parameter as
0
Oactive = Oy 51’]’ + GaQij‘ (94)

Then, the stress tensor for a three-dimensional active nematic viscous fluid, which
is how are are modeling the cortex, is

cij=—I16;+2nv;+ Gg-emaﬁc + 06,0y, (9.5)

where IT = p — 6 and v;; is the symmetric part of the velocity gradient tensor,
1
v = 5 (O + i) (9:6)

We denote by 7™ the passive stresses due to nematic order. The ¢,Q;; term is
directional active stress exerted along the nematic order. The equation of motion is
then, considering again the interialess limit for an incompressible fluid,

0o = 0= =011 + ndd; + ;67 + 0;(0.Qy). (9.7)

Starting from these equations, you will derive the equation of motion for the cor-
tex, (9.2).



a) To simplify things, we will assume that the alignment of filaments in the cortex
rapidly relax to equilibrium so that the dynamics of the order parameter may
be neglected, i.e., Q;; is constant. To find the equilibrium value of Q;;, we note
that the deformation energy of a nematic liquid crystal can be approximately
written as

L
Fu=Fo+% 0405+ 5 (0:0y) (9:Q5) . 98)

Give an explanation as to why this is a reasonable functional form for the de-
formation free energy.!

We can find c)'g-emaﬁc to be related to the functional derivative of the defor-
mation energy. You do not need to derive this, but you get the result we stated
in lecture.

o™ = B, (x — L) Qy. (9.9)

b) The cortex is essentially a two-dimensional object. It is only about one micron
thick, but has extent of over 50 microns. We therefore assume that the fila-
ments of the cortex are aligned only in the x-y plane. In other words, n, = 0,
which means that O, = Q,, = 0 and Q,; = —S/3. Given that it is con-
strained to two dimensions, find the value of Q;; that minimizes the deforma-
tion free energy, subject to the constraint that alignment is confined to a thin
sheet, i.e., that n, =~ 0. Your result will be linear in S.

c) Next, we specify that the cortex does not bend or buckle, so the stresses normal
to the two-dimensional cortex should vanish. In other words, ¢,, = 0. Based
on this assumption, derive an expression for I1. Hint: Don’t forget that in
three dimensions, the material is incompressible, so 0,v; = 0.

d) Using the expression you derived in part (c), along with the assumption that
Q;; is constant, show that the two dimensional equations of motion are

NO2vx + 30 ve + 1 (05vy + 20,0,vy) 4 0v 64 = 0, (9.10)
nO2vy + 3n05vy + 1 (9;vy + 20,0:vx) 4 y6, = 0, (9.11)

where we have absorbed a factor of S/2 into o,.
e) Show that

NO2Vy = 0.6, + MO0y + Oyvy). (9.12)

!There are also deep arguments about symmetry that come into play here, but you do not need
to worry too much about those. You can read more about this particular form of the free energy; it is
called a Landau-de Gennes expansion.



A similar relation holds in the y-direction. As a result, we have
0.0 + 1(07 + 0;)vy + 3 0x(Oyvx + Oyvy) 4 0r04 = 0, (9.13)

0.0y + 1(07 + 0;)vy + 300y (0yvx + Oyvy) 4+ dy0, = 0. (9.14)

f) Next, we will average the two equations over the thin dimension, z. That is, we

will apply the operation /™! foh dz, where £ is the cortical thickness, to each
equation. We define

1 rh
El:—/ dza, (9.15)
h Jo

where a is some physical quantity, such as v,. Show that if 0, ~ 0, i.e.,if h
is approximately constant, then d,a ~ 0,a. Going forward, you may assume
that similar results hold for d,a, 0,0,a, and so on.

g) Perform the averages over equations (9.13) and (9.14). You will be left with a
term like /4~ axz|g. Explain why we can write

1 _
7 axz\g e A (9.16)
What is the meaning of the parameter y?

h) Your equations should now look like
— Ve + (07 + 07)Vy + 30 0x(OyVx + OyVy) + 0564 =0, (9.17)
—yVy + 0(0; + 07)Vy + 37 0y(Dyvx + OyVy) + 8,64 = 0. (9.18)

Explain why the quantity 37 is a two-dimensional bulk viscosity.

i) Now, we will assume that we can neglect curvature and that we have azimuthal
symmetry in the C. elegans cortex. Under these assumptions, write a simplified
version of equation (9.17). Is equation (9.18) still necessary? Finally, what do
we need to do to get the final result we are after, equation (9.2)?

j) Consider now a domain 0 < x < L. Let ¢ be the magnitude of the active
stress. Identify a length scale ¢ such that you can nondimensionalize equation
(9.2) to give

06y =—0V+V, (9.19)

where tildes denote dimensionless quantities and the domain is now 0 < x <
L with L = L/¢. Provide an interpretation of the length scale /.



k) Imagine we now have a very sharp active stress gradient at X = X, 6, =
6 (x — Xo), where 6 (x) denotes the Heaviside step function. It can be shown
that when material cannot flow through the ends (v(0) = v(L) = 0),

sinh(L — Xo)

V(X) = W sinh(X) — 0 (X — Xo) sinh(X — Xo). (9.20)

(Can you derive this?) Plot this result for X, = 7L/10 for various values of L.
Can a local active stress gradient drive flow over long length scales?

Problem 9.2 (Optical cell stretching, 70 pts).

We briefly discussed optical cell stretchers in lecture. Optical cell stretchers work
by taking advantage of the difference in index of refraction between a cell and the
surrounding solution to trap a free cell in two counter-propagating laser beams. The
power of the laser is then increased to exert stress and elongate the trapped cell. The
induced stress is proportional to the laser power. The constant of proportionality,
F¢ is dependent on geometry and cannot be ascertained. The deformation (strain)
is measured by taking images with a light microscope. The process is illustrated in
Figure 1. In this way, the mechanical properties of an entire cell can be measured.
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Figure 1: Schematic of an optical stretcher. The cell stretches along the axis
parallel to the laser beams. The strain is given by the fractional change of the
diameter of the cell along the stretching axis. Figure take from Wottawah, et
al., Acta Biomaterialia, 1, 263-271, 2005.

This technique was used to assess the mechanical properties of two mammalian
cell types, 3T3 and SVT?2 (which have reduced actin), in Wottawah, et al., PRL, 94,
098103, 2005. In this work, the authors performed a stress step experiment in which
a constant stress 6 was applied at # = 0, asin lecture. The stress was set back to zero
attime 7 = #,. The authors can obtain the creep compliance from this measurement.
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Figure 2: Schematic of an active Jeffreys fluid.

Derive an expression for the strain in the stress step experiment if we model the
cell as an active Jeffreys fluid as in Figure 2. The stress step can be described
mathematically as

o(t)y=Fgo00(t) 0(t; — 1), (9.21)

where 6 (1) is the Heaviside step function. Assume the active stress is con-
stant, given by o ,.

The authors perform curve fits of the expression you derived in part (a) to get
values for the parameters of the cell. Explain why they cannot independently
measure E, 77, and ¢, but only products thereof. Can a constant active stress
be detected in this experiment?

The authors then use the curve fit parameters to compute the storage and loss
moduli (£’ and E”) of the cell. Derive expressions for the storage and loss
moduli from the fit parameters. (Note: These reported storage and loss moduli
are dependent on choosing a model for the viscoelastic behavior of the cell.
Thisis notideal, but is apparently a necessity due to experimental constraints.)



