
BE/APh 161: Physical Biology of the Cell, Winter 2025
Homework #2

Due at the start of lecture, 2:30 PM, January 22, 2025.

Problem 2.1 (How many polymerases?, 10 pts).
One time I was lecturing in my BE 150/Bi 250b, which I co-teach with Michael
Elowitz. We were talking about strong versus weak promoters, and based on a stu-
dent question in lecture, we had to make an impromptu estimate of the number
of polymerases in a bacterial cell. I started doing some street-fighting estimations
(meaning an estimation with no help from any references or calculators), but I could
not get an estimate faster thanProf. Elowitz could look it up onBioNumbers. Nonethe-
less, I think it is a fun and instructive estimate to make. Street-fight your way to that
estimate.

Problem 2.2 (Mathematizing a cartoon for ciliar growth, 50 pts).
We considered a model for flagellar growth in lecture. Another model for flagellar or
ciliar growthwas proposed inHoward, et al.,Nat. Rev. Mol. Biol., 12, 393–398, 2011.
The cartoon is shown in Fig. 1, along with the text from the caption in the paper.

Let c(x, t) be the concentration of active growth factors in the cilium and let ℓ(t)
be the length of the cilium.

a) Write down a set of differential equations to describe the dynamics of c and
ℓ. If you like, you may assume a constant number of cargo-carrying motors
as we did in lecture for the Chlamydomonas flagella, or you may assume that
the density of motors is constant. Be sure to state any other assumptions or
decisions you made in mathematizing the cartoon.

b) Nondimensionalize your dynamical equation(s) and comment on any physical
insight this procedure provides.

c) If you can, solve for ℓ(t) analytically. If you cannot, solve it numerically. Also
plot the growth rate, dℓ/dt, over time.
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quantitatively account for the spatial period 
and dynamics of the patterns.

Patterns generated by advection and 
diffusio n. When advection moves mate-
rial in one direction and diffusion tends to 
move the material in the opposite direction 
(down its concentration gradient), a new 
length scale emerges: λ = D/v (FIG. 2a). An 
example of this is the localization of myosin 
motor proteins at the tips of the stereocilia 
of hair cells (FIG. 2b), which is thought to be 
due to the combination of directed move-
ment of the motor along the actin filaments 
within the stereocilia (advection) and diffu-
sion that occurs when the motor detaches 
from the actin42. The stereocilia form the 
hair bundle, the mechanosensitive organelle 
of these cells, and proper stereocilial length, 
which is essential for hearing, is regulated 
by myosins43, although how exactly the 
motor localization controls length is still 
not understood.

Antenna mechanism. A particularly inter-
esting example of length determination 
takes place when the reaction involves the 
shortening of the polymer track on which 
active transport is occurring44,45. In this 
example, kinase-interacting protein 3 (Kip3) 
motors (which belong to the Kinesin-8 
family) bind randomly along the length of 
a microtubule at a rate ron per unit length 
of microtubule (proportional to the cyto-
plasmic Kip3 concentration); they move 
processively to the end of the microtubule 
and then remove a tubulin dimer before 
dissociating (FIG. 2c). This gives a depolym-
erization rate that depends on the micro-
tubule length: the longer the microtubule, 
the more motors land on it, the greater the 
flux of motors to the end and therefore the 
higher the rate of depoly merization. Thus, 
the microtubule acts as an antenna for 
motors. If the microtubule polymerization 
rate in the absence of motors (r+, which is 
proportional to the bulk tubulin concentra-
tion) is independent of length, and if the 
motor speed is much faster than the rate of 
microtubule growth due to polymerization, 
the characteristic length is λ = r+/ron (REF. 46) 
(FIG. 2d), which increases with the tubulin 
concentration and decreases with the motor 
concentration. The length is independent 
of the motor velocity, and only requires 
that the motors be fast enough to outpace 
growth and processive enough to reach the 
microtubule end.

This mechanism accounts for the role 
of Kinesin-8 in controlling the overall 
length of the mitotic spindle, as well as its 

role in centring the chromosomes in the 
metaphase spindle, which requires that the 
two half spindles (which span between the 
poles and the chromosomes) be the same 
length47–49. In this mechanism, the motor 
proteins act as molecular rulers that pace 
out the lengths of the microtubules; they 
then use depolymerizatio n as a readout of 
the length.

Patterns formed by advection and reaction. 
Patterns can also be generated by a combi-
nation of advection and reaction: the length 
scale is λ = v/k. Although no biological 
lengths are known to be regulated by such a 
mechanism, there are numerous candidates. 
For example, if motor proteins carry cargo 
molecules along the cytoskeletal filaments 
within cilia and microvilli, and the cargoes 

are inactivated over time, for example by 
phosphatases, then the deactivation of the 
cargoes could provide a length-dependent 
signal to the growing tip of the cilium or 
microvillus (FIG. 2e).

Patterns generated by viscosity and fric-
tion. Active material properties can also 
define length scales. Consider a viscoelastic 
materia l, such as a contractile tissue or the 
thin actomyosin cortex located under the 
plasma membrane of a cell. A gradient 
of motor activity in the material will cre-
ate an active stress gradient and lead to 
a velocity gradient; over long timescales, 
the material behaves as a viscous fluid. If 
there is friction with the surroundings, for 
example between the tissue and an adjacent 
rigid extracellular matrix or between the 
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Figure 1: A cartoon describing a possible mechanism for ciliar growth adapted
from Howard, et al., Nat. Rev. Mol. Biol., 12, 393–398, 2011. The text from
the caption in the paper reads as follows. “Schematic of an advection-reaction
model, a hypothetical mechanism for the length control of cilia and microvilli.
Cargoes, for example growth factors, carried along cilia and microvilli are in-
activated over time by phosphatases, which may provide a length-dependent
signal to the growing tip.”

Problem 2.3 (Growth curves, based loosely on page 103 of PBoC2, 40 pts).
In Homework 1, we wrote the logistic equation for bacterial growth as

dc
dt = rc

(
1 − c

K

)
, (2.1)

where c is the concentration of bacteria, r is the growth rate (we are using r here to
avoid the confusion of having upper and lower case K’s flying around), and K is the
carrying capacity, or the maximum concentration of bacteria that can be present and
still have growth. For bacteria growing in media, r and K could also be functions of
the the concentration of food in the media, which we will call F(c, t).

a) Write down an expression for dF/dt. You should try to keep your expression
simple. Give your reasoning for how you chose this expression.

b) Sketch functional forms that you think are reasonable for r(F) andK(F). (Sketch;
do not use plotting software.) Again, try to keep them simple.

c) Based on what you know about bacterial growth, give reasonable values of the
parameters you defined in your expressions for dF/dt, r(F) and K(F). Also
give reasonable values for the initial bacteria concentration, c0, and the ini-
tial food concentration, F0. Explain how you came up with these values; you
may use whatever references you like. Hint: Working through problem 2.5 of
PBoC2 will help you.

d) Solve the differential equations (numerically or analytically) and plot the re-
sults. You can use whatever numerical integration software you like. If you
would like to use Python with NumPy/SciPy, the Jupyter notebook accompa-
nying lecture 3 might serve as a useful reference.
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e) Explain the shape of the curves.

f ) Comment on any enhancements you would propose to this model for bacterial
growth.
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